skip to main content


Search for: All records

Creators/Authors contains: "Clark, Karin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background and Aims

    The Arctic is warming at an alarming rate, leading to earlier spring conditions and plant phenology. It is often unclear to what degree changes in reproductive fitness (flower, fruit and seed production) are a direct response to warming versus an indirect response through shifting phenology. The aim of this study was to quantify the relative importance of these direct and indirect pathways and project the net effects of warming on plant phenology and reproductive fitness under current and future climate scenarios.

    Methods

    We used two long-term datasets on 12 tundra species in the Canadian Arctic as part of the International Tundra Experiment (ITEX). Phenology and reproductive fitness were recorded annually on tagged individual plants at both Daring Lake, Northwest Territories (64° 52' N, - 111° 35' W) and Alexandra Fiord, Nunavut (78° 49' N, - 75° 48' W). The plant species encompassed a wide taxonomic diversity across a range of plant functional types with circumpolar/boreal distributions. We used hierarchical Bayesian structural equation models to compare the direct and indirect effects of climate warming on phenology and reproductive fitness across species, sites and years.

    Key Results

    We found that warming, both experimental and ambient, drove earlier flowering across species, which led to higher numbers of flowers and fruits produced, reflecting directional phenotypic selection for earlier flowering phenology. Furthermore, this indirect effect of climate warming mediated through phenology was generally about two to three times stronger than the direct effect of climate on reproductive fitness. Under future climate predictions, individual plants showed a ~2- to 4.5-fold increase in their reproductive fitness (flower counts) with advanced flowering phenology.

    Conclusions

    Our results suggest that, on average, the benefits of early flowering, such as increased development time and subsequent enhanced reproductive fitness, might outweigh its risks. Overall, this work provides important insights into population-level consequences of phenological shifts in a warming Arctic over multi-decadal time scales.

     
    more » « less
  2. null (Ed.)
    Abstract Rapid climate warming is altering Arctic and alpine tundra ecosystem structure and function, including shifts in plant phenology. While the advancement of green up and flowering are well-documented, it remains unclear whether all phenophases, particularly those later in the season, will shift in unison or respond divergently to warming. Here, we present the largest synthesis to our knowledge of experimental warming effects on tundra plant phenology from the International Tundra Experiment. We examine the effect of warming on a suite of season-wide plant phenophases. Results challenge the expectation that all phenophases will advance in unison to warming. Instead, we find that experimental warming caused: (1) larger phenological shifts in reproductive versus vegetative phenophases and (2) advanced reproductive phenophases and green up but delayed leaf senescence which translated to a lengthening of the growing season by approximately 3%. Patterns were consistent across sites, plant species and over time. The advancement of reproductive seasons and lengthening of growing seasons may have significant consequences for trophic interactions and ecosystem function across the tundra. 
    more » « less
  3. null (Ed.)
    Observations of changes in phenology have provided some of the strongest signals of the effects of climate change on terrestrial ecosystems. The International Tundra Experiment (ITEX), initiated in the early 1990s, established a common protocol to measure plant phenology in tundra study areas across the globe. Today, this valuable collection of phenology measurements depicts the responses of plants at the colder extremes of our planet to experimental and ambient changes in temperature over the past decades. The database contains 150,434 phenology observations of 278 plant species taken at 28 study areas for periods of 1 to 26 years. Here we describe the full dataset to increase the visibility and use of these data in global analyses, and to invite phenology data contributions from underrepresented tundra locations. Portions of this tundra phenology database have been used in three recent syntheses, some datasets are expanded, others are from entirely new study areas, and the entirety of these data are now available at the Polar Data Catalogue (https://doi.org/10.21963/13215). 
    more » « less